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Abstract
We have performed ab initio electronic structure and total-energy calculations
for bcc, fcc, and hcp Al structures to study the equations of state, volume
dependences of elastic constants, and relative stability diagram for these
structures. A technique for elastic constant calculation in the case of initial
isotropic pressure is presented. In this study we used the accurate full-potential
linear muffin-tin orbital method to describe electrons of the crystal and the
Debye treatment of the vibrating lattice. The volume dependence of the Debye
temperature is derived from the volume dependence of the elastic constants.
Our calculations show that at pressures of 1–2 Mbar and temperatures of about
1000 K and higher, the aluminium structure must have a lower symmetry than
the structures considered.

1. Introduction

Interest in ab initio (without empirical parameters) calculations of the equation of state (EOS)
and relative stability of crystal structures has been high for many years. As a rule, calculations
have been done for T = 0, where there is no thermal excitation of nuclei. In particular,
the relative stability of the fcc, bcc, and hcp structures of Al was studied in [1–7] for static
lattices with the use of different electron structure calculation methods and different forms of
the exchange–correlation functional.

Also, attempts were made to allow for the contribution of the thermal excitation of nuclei
to thermodynamic functions without using empirical parameters. There are two directions
followed in those attempts. The first uses the Debye model; the second is based on the
approximate construction of the phonon dispersion relations. These approaches were widely
used previously for construction of the semi-empirical EOS. In particular, a well-known form
of the EOS, named the Mie–Grüneisen form [8], was based on the Debye model. The new
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feature, which allows us to describe the results as ab initio, is the use of values obtained in ab
initio calculations instead of empirical parameters.

Moruzzi et al [9] described thermal excitation of nuclei within the scope of the Debye
model, which incorporated a volume dependence of the Debye temperature. They expressed
this dependence in terms of a volume dependence of the bulk modulus, which had been
obtained from ab initio calculations. An attempt to investigate systematically the influence
of temperature on thermodynamic functions of different Al crystal structures in terms of ab
initio calculations was made in our previous paper [10]. Similarly to Moruzzi et al [9],
we used the Debye model for the description of thermal excitation of the nuclei, but unlike
them, we determined the relationships of the shear modulus (S) and longitudinal modulus (L)
with the bulk modulus (B) individually for each structure by averaging over periodic system
elements having similar crystal structure. Unfortunately, this approach allowed us to reach
only qualitative conclusions about the influence of temperature on the relative stability of fcc,
bcc, and hcp structures of Al.

Christensen et al [11] considered bcc and fcc structures of Cs within the scope of the
quasi-harmonic approximation, obtained the phonon dispersion relation in terms of elastic
constants, and used ab initio elastic constants as functions of volume to calculate the basic
thermodynamical functions of bcc and fcc structures and the fcc–bcc coexistence pressure
versus temperature for Cs. Katsnelson et al [12] used a pseudopotential model for calculation
of the phonon contribution to thermodynamical functions. Debernardi et al [13] also used the
pseudopotential model for calculation of the phonon dispersion relation. To obtain the phonon
frequencies as functions of volume, they used Taylor expansion and perturbation theory. As a
result, temperature dependences of the linear thermal expansion coefficient and of the specific
heat were obtained for aluminium and tungsten.

Mohn et al [14] presented a mean-field model for temperature-induced martensitic phase
transitions. The classical mean-field potential approach was used successfully in a paper by
Wang and Li [15] to evaluate the vibrational contribution of the Al fcc lattice ions to the total
free energy. Unfortunately, the mean-field potential used in [15] depends weakly on the crystal
structure and, therefore, cannot be used for evaluation of the vibrational free energy of the other
Al structures.

Molecular dynamics simulations were also used for the description of the thermal
excitation of nuclei without using empirical parameters. Strachan et al [16] used this method
to predict the EOS and the phase coexistence curves of the B1–B2 and B1–liquid phases of
MgO.

Cohen and Gülseren [17] obtained the contribution of the thermal excitation of nuclei
by computing the partition function using the particle-in-a-cell model. This incomplete list
of works corroborates our assertion of a high level of interest in ab initio calculations of the
influence of temperature on thermodynamic functions.

In this paper we present revised and more complete [7] theoretical data on the EOS and
volume dependence of the elastic constants for Al in bcc, fcc, and hcp structures at T = 0.
These data were obtained by means of the high-precision full-potential linear muffin-tin orbital
(FPLMTO) method [18]. Also, the influence of temperature on the thermodynamic functions
of the fcc, bcc, and hcp structures of Al is studied. For this we used a variant of the Debye
model [19] where the volume dependence of the Debye temperature was found by using the
volume dependence of the elastic constants at T = 0. Thermal excitation of electrons was
taken into account, too. An attempt was made to construct the P–T diagram of the relative
stability of the fcc, bcc, and hcp crystal structures of Al, and existence of an unknown structure
was predicted. This structure exists at elevated temperatures and pressures of 1–2 Mbar.
Preliminary results of this work were published in [20–22].
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The rest of this paper is organized as follows. The technique used for the elastic constant
calculation in the case of initial isotropic pressure is given in section 2. Computational details
of the ab initio electronic structure calculations and the method used for the thermodynamic
function calculations are given in section 3. In section 4 we present the calculations of the
EOS, elastic constants, Debye temperature, and Grüneisen parameter for various Al structures
at various specific volumes. In section 4 we report on the results of the construction of the
relative stability diagram for fcc, bcc, and hcp Al structures, too. Finally, a short summary is
given in section 5.

2. Elastic constants under pressure

2.1. The method of the elastic constant calculation

At present, ab initio calculations of elastic constants of crystals under ambient pressure are
not a problem (see, e.g., [23–32]). However, the question of how to calculate elastic constants
at arbitrary isotropic pressure requires special consideration. We managed to find only a few
papers [33–36] concerning this problem.

Let us consider a crystal compressed by the isotropic pressure P to the density ρ1. Small
(but not infinitesimal) homogeneous deformation of this crystal takes every Bravais lattice
point �R of the undistorted lattice to a new position �R′ in the strained lattice:

R′
i =

∑
j

(δi j + εi j)R j . (1)

For a homogeneous strain the parameters εi j are simply constants, independent of �R, with
εi j = ε j i , where the subscripts i, j indicate Cartesian components and each ranges over three
values; δi j is the Kronecker delta. Expanding the internal energy per unit mass of the crystal
with respect to the Lagrangian strain tensor:

ηi j = εi j + 1
2

∑
k

εikεk j (2)

gives [37]

E(ρ1, {ηmn}) = E(ρ1) +
1

ρ1

(∑
i j

Ti jηi j +
1

2

∑
i jkl

Ci jklηi jηkl + · · ·
)

. (3)

Here Ti j stands for components of the stress tensor before deformation:

Ti j = ρ1
∂ E(ρ1, {ηmn})

∂ηi j

∣∣∣∣{ηmn=0}
. (4)

For isotropic initial pressure, we have

Ti j = −Pδi j . (5)

Ci jkl are elastic constants of the crystal at an arbitrary isotropic pressure P:

Ci jkl = ρ1
∂2 E(ρ1, {ηmn})

∂ηi j ∂ηkl

∣∣∣∣{ηmn=0}
. (6)

It should be pointed out that equation (3) represents the energy of the strained crystal in the
case of full relaxation of atom positions within the distorted Bravais lattice.

To calculate ab initio elastic constants, the deformation parameters are usually specified in
the form εi j = fi j(γ ), where γ is an infinitesimal parameter and fi j(0) = 0. If equations (2),
(5) are used and εi j is represented in the form

εi j = si jγ + ei jγ
2 + · · · , (7)
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then equation (3) can be written as follows:

E(ρ1, {ηmn}) = E(ρ1) + Aγ +
D

2
γ 2 + · · · , (8)

where

A = − P

ρ1

∑
i

sii , (9)

D = 1

ρ1

∑
i jkl

Ci jkl si j skl − 2P

ρ1

∑
ik

(
eikδik +

s2
ik

2

)
. (10)

By present-day ab initio methods,one can calculate the energy of a strained crystal as a function
of γ for any initial isotropic pressure P and any deformation parameters εi j of the form (7),
and obtain the linear equation for elastic constants Ci jkl :∑

i jkl

Ci jkl si j skl = 2P
∑

ik

(
eikδik +

s2
ik

2

)
+ ρ1

∂2 E(ρ1, γ )

∂γ 2

∣∣∣∣
γ=0

. (11)

We ought to note that equation (11) is equally valid for strains with and without volume
conservation. Obviously, for ambient conditions equation (11) is in agreement with ones
which were used before [23–32]. In order to calculate all M independent elastic constants of
a crystal, we need to apply M independent strains to the unit cell and to obtain a system of M
linear equations, each being like equation (11).

Using the symmetry properties of matrices ε̂ and Ĉ , the standard notation xx ≡ 1, yy ≡ 2,
zz ≡ 3, yx ≡ 4, zx ≡ 5, yz ≡ 6, and introducing a value

ξα =
{

1, if α = 1, 2, 3

2, if α = 4, 5, 6,
(12)

we can rewrite equation (11) as∑
αβ

ξαξβCαβsαsβ = 2P
∑

α

(2 − ξα)eα + P
∑

α

ξαs2
α + ρ1

∂2 E(ρ1, γ )

∂γ 2

∣∣∣∣
γ=0

. (13)

According to equation (13), pressure has an influence on the values of the elastic constants
even when isochoric strains are used. The authors of [36] did not take this fact into account;
therefore their high-pressure elastic constants for tantalum need refinement.

2.2. Bulk modulus and elastic constants

Let us consider the strain representing the crystal response to hydrostatic pressure (all-
sides compression). This strain allows determination not only of the value of some linear
combination of the elastic constants but also of the link between the elastic constants and the
bulk modulus. As an example, below we will consider this link for a tetragonal crystal which
has been compressed by isotropic pressure P to a density of ρ1 = 1/V1.

For real tetragonal crystals the parameter c/a is a function of specific volume V :

c

a
≡ ϕ(V ) = ϕ(V1)

[
1 +

µ

V1
(V − V1) + · · ·

]
, (14)

where

µ = V1

ϕ(V1)

dϕ(V )

dV

∣∣∣∣
V =V1

. (15)
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The all-sides compression corresponds to a strain

εi j = ti (γ )δi j . (16)

Here t1 = t2 = γ , t3 = β(γ ), and the function β(γ ) is specified by the volume dependence of
the parameter c/a:

c

a
= 1 + β(γ )

1 + γ
ϕ(V1). (17)

Comparing equations (14) and (17) and taking into account that the specific volume for the
strain (16) correlates with γ as

V = V1(1 + γ )2(1 + β(γ )), (18)

we derive

β(γ ) = (1 − µ)(1 + γ )

1 − µ(1 + γ )3
− 1. (19)

Since the crystal energy for the strain (16) is a function of specific volume only, using
equations (18), (19) and the definitions

P = −dE

dV
, B = V

d2 E

dV 2
, (20)

we can obtain the following result:

ρ1
d2 E

dγ 2

∣∣∣∣
γ=0

= B

V 2
1

(
dV

dγ

)2∣∣∣∣
γ=0

− P

V1

d2V

dγ 2

∣∣∣∣
γ=0

= 9B

(1 − µ)2
− 6

1 + 2µ

(1 − µ)2
P. (21)

For tetragonal crystals there are six independent elastic constants, usually referred to as
C11, C12, C13, C33, C44, C66, with the rest defined by symmetry and the equalities

C22 = C11, C23 = C13, C55 = C44, (22)

or equal to zero.
Equations (13), (16), (18)–(22) lead to the following relationship between the elastic

constants and bulk modulus for tetragonal crystals:

2C11 + 2C12 + 4
1 + 2µ

1 − µ
C13 +

(
1 + 2µ

1 − µ

)2

C33 = 9B

(1 − µ)2
− 3

1 − 4µ2

(1 − µ)2
P. (23)

In the case of P = 0, equation (23) gives

2C11 + 2C12 + 4
1 + 2µ

1 − µ
C13 +

(
1 + 2µ

1 − µ

)2

C33 = 9B

(1 − µ)2
. (24)

Moreover, if the c/a ratio does not change, equation (24) coincides with the familiar
relationship

B = 1
9 (2C11 + 2C12 + 4C13 + C33). (25)

It is easy to verify that equation (23) is true not only for tetragonal crystals, but also for
hexagonal ones.

For cubic crystals, the relationship between elastic constants and the bulk modulus is

C11 + 2C12 = 3B − P. (26)

This relationship generalizes the one known (see [38]) for the case of P > 0 and can be derived
from equation (23) if the identities valid for cubic crystals C33 = C11, C13 = C12 are used and
the c/a ratio is assumed to be constant. The relationship (26) was used in [39].
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2.3. Mechanical stability in crystals under isotropic pressure

Using equations (8)–(10) we can state the conditions for mechanical stability of a crystal
against any homogeneous elastic deformation (1). To do this, let us represent equation (8) as
follows:

�E = E(ρ1, γ ) − E(ρ1, 0) = −P �V + �Ein, (27)

where �V is the variation of the volume with deformation:

�V = V1[det( Î + ε̂) − 1]

= V1γ

(∑
i

sii

)
+

V1γ
2

2

[
2

(∑
i

eii

)
+

(∑
i

sii

)2

−
∑

i j

s2
i j

]
+ · · · , (28)

�Ein = V1
γ 2

2

[
P

(∑
i

sii

)2

− 2P
∑

i j

s2
i j +

∑
i jkl

Ci jkl si j skl

]
+ · · ·

= V1
γ 2

2

∑
αβ

{ξαξβCαβ + P[(2 − ξα)(2 − ξβ) − 2ξαδαβ]}sαsβ + · · ·

= V1
γ 2

2

∑
αβ

Gαβsαsβ + · · · . (29)

The requirement of mechanical stability of the crystal leads to the inequality �Ein > 0. This
inequality is satisfied only if a symmetric matrix

Ĝ =




C̃11 C̃12 C̃13 2C14 2C15 2C16

C̃21 C̃22 C̃23 2C24 2C25 2C26

C̃31 C̃32 C̃33 2C34 2C35 2C36

2C41 2C42 2C43 4C̃44 4C45 4C46

2C51 2C52 2C53 4C54 4C̃55 4C56

2C61 2C62 2C63 4C64 4C65 4C̃66


 (30)

has a positive determinant. Here,

C̃αα = Cαα − P, α = 1, 2, . . . , 6

C̃12 = C12 + P, C̃13 = C13 + P, C̃23 = C23 + P.
(31)

This result agrees with one published several years ago [40].
For cubic crystals, a positive determinant for matrix (30) and therefore mechanical stability

of the crystals occurs under the following conditions:

C̃44 > 0, C̃11 > |C̃12|, C̃11 + 2C̃12 > 0. (32)

For hexagonal crystals, these conditions are more complex:

C̃44 > 0, C̃11 > |C̃12|, C̃33(C̃11 + C̃12) > 2C̃2
13. (33)

For ambient conditions, equations (32), (33) are in agreement with familiar expressions.

3. The method of thermodynamic function calculation

3.1. Static zero-temperature energy and pressure calculation

Our calculations of the static zero-temperature energy for the fcc, bcc, and hcp Al
structures are based on first-principles density-functional theory within the generalized gradient
approximation [41, 42]. The calculations were all-electron, non-relativistic and employed no
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shape approximation for the charge density or potential. We used the highly accurate FPLMTO
technique [18]. The calculations were done for one, fully hybridized energy panel, in which 2s,
2p, 3s, 3p electrons of the Al atom were included. The basis set was comprised of augmented
linear muffin-tin orbitals with s, p, d momenta. The angular momentum representation for the
basis functions, charge density, and potential was used within muffin-tin spheres as well as
in the interstitial region. The crystalline space was partitioned into atom-centred polyhedral
cell envelopes, and linear muffin-tin orbitals were expanded in spherical harmonics inside the
spheres surrounding them. These one-centre expansions define correctly the charge density
and the relevant quantities within polyhedra. The cut-off angular momentum in the sums
was chosen to maintain the necessary precision. Twelve energy parameters [18] were used to
calculate the radial functions for the expansions of the basis in the muffin-tin spheres. Four
tail parameters [18] were used to define the kinetic energy of the basis in the interstitial. The
values of the parameters were computed automatically by a special algorithm, which took
into account change of the crystal energy spectrum under pressure. As a rule, the radii of
the muffin-tin spheres were chosen as large as possible, but calculation of each strain was
carried out with constant MT radius for all values of the lattice distortion. Integration over
the Brillouin zone was done using the linear tetrahedron method. We used 256, 256, and 484
points in the irreducible wedge of the fcc, bcc, and hcp Brillouin zone, respectively. When a
strain is introduced in the crystal, the number of points in the irreducible wedge is recalculated
for the symmetry of the distorted crystal.

As special analysis showed, the above set-up for calculations made it possible to find for
any density the static zero-temperature energy of all structures considered with an accuracy
within the limits of 10−4 Ryd/atom.

Pressure as a function of volume for T = 0 was calculated by differentiation of an
analytical expression which approximated the energy–volume relation in the vicinity of each
volume value. We considered four frequently used forms of analytical volume dependence of
energy [43–47] and chose the Parsafar and Mason [47] formula.

3.2. Free energy and the Gibbs potential

To find the thermodynamic functions at T > 0, we used expansion in terms of powers of T
to take into account the thermal electronic excitations and a variant of Debye model proposed
in [19] to describe thermal excitation of the nuclei.

The contribution of the thermal electronic excitations to the Helmholtz free energy per
atom, accurate up to terms of the order of T 2, is connected with the density of states on the
Fermi surface nF (V ):

Fe(V , T ) = −π2

6
nF (V )T 2. (34)

The function nF (V ) is calculated in the course of the electronic structure calculation.
The main idea [19] is to derive the dependence of the Debye temperature  on the volume

by determining how the mean velocity of sound depends on the volume. The Debye temperature
and the mean velocity of sound are related as follows:

(V ) =
(

6π2

V

)1/3

h̄u(V ), (35)

where u is the mean velocity of sound which can be determined for each value of the volume
per atom V by averaging the true velocity of sound us(�n) over the directions of the unit vector
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�n and spectrum branches s = 1, 2, 3 using the formula [48]

1

u3 = 1

3

∑
s

∫
d ��
4π

1

u3
s (�n)

. (36)

According to [37], if the initial isotropic pressure P affects an anisotropic crystal, then the
sound velocity us(�n) in direction �n can be found from the eigenvalue problem for the matrix
Lik(�n) completely determined by the elastic constants and initial pressure:

Lik(�n) =
∑

jl

Ci jkl n j nl − Pδik . (37)

The equation has the form

det[Lik(�n) − ρu2(�n)δik] = 0, (38)

where ρ is the crystal density. Having theoretically calculated the dependence of the elastic
constants on the volume for various structures, we can use formulae (35)–(38) to determine
how the Debye temperature depends on volume and calculate the phonon contribution to the
Helmholtz free energy per atom:

Fi (V , T ) = 9

8
 + 9T

(
T



)3 ∫ /T

0
x2 ln(1 − e−x) dx . (39)

The Helmholtz free energy per atom F(V , T ) and Gibbs potential per atom G(P, T ) for each
crystalline structure are calculated using well-known formulae:

F(V , T ) = Ec(V ) + Fi (V , T ) + Fe(V , T ), (40)

G(P, T ) = F(V (P, T ), T ) + PV (P, T ). (41)

Here Ec(V ) is the static zero-temperature energy.

4. Calculation results

4.1. Equation of state and elastic constants

Table 1 lists the calculated specific volume V0, the bulk modulus B0 and its pressure derivative
B ′

0, and elastic constants C11, C12, C44 for aluminium at zero pressure. Corresponding
experimental data for V0 [49], B0 [49], B ′

0 [49], C11, C12, and C44 [50] and extrapolations
of these data to T = 0 are also listed in table 1. We do not cite the corresponding values
calculated by other authors and listed, for example, in [6]. In our opinion, it is difficult to reach
general conclusions on the basis of results obtained at different times by different numerical
methods, using different forms of exchange–correlation functional, and having different and
often unknown accuracies.

Total energies of the static lattice and corresponding pressures were calculated for fcc,
bcc, and hcp aluminium at 16 values of the specific volume, V/Ṽ0, ranging from 1.1 to 0.3.
Here Ṽ0 is the measured specific volume at atmospheric pressure and temperature 298 K,
equal to 112.04 au/atom of the crystal [49]. The equilibrium values of the ratio c/a for each
specific volume of the hcp structure were found from the condition of minimum total energy
as a function of c/a. Calculated regardless of the impact of zero-point vibrations, the Gibbs
potentials at T = 0, relative to fcc structure, for bcc and hcp structures are shown in figure 1(a).

To calculate the elastic constants of the bcc and fcc structures, to test relationship (26), and
to assess the precision of the elastic constant calculation, we applied five independent strains
to each of these structures. The parametrizations that we used for these strains are given in
table 2. Strains 1–3 are not volume-conserving and strains 4–5 are strictly volume-conserving.
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Figure 1. Gibbs potential difference �G = G − Gfcc at T = 0 versus pressure for bcc and hcp
structures of Al: (a) disregarding and (b) considering the impact of zero-point vibrations.

Table 1. Values of some parameters of fcc aluminium at T = 298 and 0 K.

Calculation Calculation
without with

Experiment, Extrapolation zero-point zero-point
T = 298 K to T = 0 K vibrations vibrations

V0 (au) 112.04a 110.61 112.22 113.50
B0 (Mbar) 0.727a 0.758 0.744 0.725
B ′

0 4.30 a 3.97 4.64 4.15
C11 (Mbar) 1.069b 1.143 1.105 —
C12 (Mbar) 0.608b 0.619 0.580 —
C44 (Mbar) 0.282b 0.316 0.311 —

a Reference [49].
b Reference [50].

We calculated the total energy of each strain for a number of small values of γ . These energies
were then fitted to a polynomial in γ and the curvature of the energy versus γ curve was
obtained for use in equation (13).

We used strains 1–3 to obtain the elastic constants from systems of equations like (13).
The results are presented in table 3. They illustrate the compression dependence of the elastic
constants at T = 0 for bcc and fcc aluminium.

As mentioned above, the equality C̃11 − |C̃12| = 0 is a condition of violation of the
mechanical stability of cubic crystal. It follows from table 3 that the bcc structure is stable
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Table 2. The strains used to calculate the elastic constants of the bcc and fcc Al. The energy second
derivatives were obtained from equation (13).

Strain Parameters (unlisted: εi j = 0) ρ1
∂2 E(ρ1, γ )

∂γ 2

∣∣∣∣∣
γ=0

1 ε11 = ε22 = γ 2(C11 + C12 − P)

2 ε13 = ε31 = γ 4C44 − 2P
3 ε11 = γ C11 − P
4 ε11 = ε22 = γ ,

ε33 = (1 + γ )−2 − 1 6(C11 − C12) − 12P
5 ε12 = ε21 = γ ,

ε33 = (1 − γ 2)−1 − 1 4(C44 − P)

Table 3. Second-order elastic constants with addition of the pressure from equation (31) (in Mbar)
versus relative volume for fcc and bcc aluminium.

V/Ṽ0 C̃ ′
fcc C̃ ′

bcc C̃ fcc
44 C̃bcc

44

1.000 0.2529 −0.1720 0.3119 0.4445
0.900 0.3962 −0.1954 0.5557 0.7196
0.800 0.6980 −0.1952 0.9905 1.145
0.700 0.9187 −0.1259 1.662 1.886
0.626 1.017 5.0 × 10−5 2.350 2.708
0.600 1.039 0.073 86 2.677 3.063
0.500 0.9804 0.5915 4.346 4.828
0.450 0.7427 1.060 5.593 6.053
0.400 0.2105 1.774 7.337 7.595
0.350 −0.8966 2.935 9.832 9.593
0.300 −3.148 5.292 13.11 12.16

only at relative volumes V/Ṽ0 < 0.626; the fcc structure becomes mechanically unstable at
relative volumes V/Ṽ0 < 0.4.

The bulk modulus calculated from equation (20) was used to assess the precision of the
elastic constant calculation. We calculated the bcc and fcc elastic constants of Al, using the
strains 4–5 and relationship (26). The difference between the elastic constants calculated in
this way and the ones obtained using strains 1–3 is within 3% over the whole range of pressures
under study.

We applied the five strains listed in table 4 in order to determine the elastic constants
of hcp structure Al. All these strains are volume-non-conserving. The atomic positions
were optimized at all strains where they had some degrees of freedom. The compression
dependences of the elastic constants at T = 0 for hcp aluminium are presented in table 5.
Figure 2 shows mean sound velocity u versus compression calculated using equation (36) for
the three aluminium structures. The non-monotonic variation of the curves in figure 2 with the
growth of pressure is an interesting peculiarity. The mean sound velocities differ significantly
in the three aluminium structures considered, which allows reliable detection of structural
changes on the basis of the sound velocity measurements.

4.2. Debye temperature and Grüneisen parameter

Using the calculated values of the elastic constants and formulae (35)–(38), we calculated the
volume dependence of the Debye temperature for the above aluminium structures. The data



Ab initio elastic constants and thermodynamic properties of Al 6999

1.0 1.5 2.0 2.5 3.0
2

4

6

8

10

12

~
Compression V0/V

hcp
bcc

fcc

Pressure (Mbar)
1086420.50

S
ou

nd
V

el
oc

ity
(k

m
/s

ec
)

Figure 2. Mean sound velocity for fcc, bcc, and hcp aluminium. Pressures marked on the upper
axis correspond to compressions of the fcc structure on the lower axis.

Table 4. The strains used to calculate the elastic constants of hcp Al. The energy second derivatives
were obtained from equation (13).

Strain Parameters (unlisted: εi j = 0) ρ1
∂2 E(ρ1, γ )

∂γ 2

∣∣∣∣∣
γ=0

1 ε11 = ε33 = γ C11 + 2C13 + C33 − 2P
2 ε11 = −ε22 = γ 2(C11 − C12 − P)

3 ε11 = ε22 = γ 2(C11 + C12 − P)

4 ε13 = ε31 = γ 4C44 − 2P
5 ε33 = γ C33 − P

Table 5. Second-order elastic constants with addition of pressure from equation (31) (in Mbar)
versus relative volume for hcp aluminium.

V/Ṽ0 C̃hcp
11 C̃hcp

12 C̃hcp
13 C̃hcp

33 C̃hcp
44

1.00 1.394 0.4138 0.4978 1.355 0.1402
0.70 5.116 1.854 1.710 5.285 0.8427
0.50 13.02 5.353 4.623 13.65 2.405
0.40 20.42 12.99 8.504 23.50 3.990
0.35 25.48 20.76 12.36 31.85 5.048
0.30 31.73 33.04 18.88 44.60 6.207

obtained are presented in table 6. Differentiating the dependence of the Debye temperature on
volume readily gives the dependence of the Grüneisen parameter on volume:

γ (V ) = −d ln (V )

d ln V
. (42)

Figure 3 shows our data and the Grüneisen parameter calculated from the Slater formula [51]

γSlat (V ) = −2

3
− V

2

d2 Pcol

dV 2

(
dPcol

dV

)−1

, (43)
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Figure 3. The Grüneisen parameters for fcc, bcc, and hcp aluminium. The solid curve shows our
calculations, the dashed one shows data from the semi-empirical EOS [52] for fcc structure, and
the dot–dash curve shows the calculation with the Slater formula. Pressures marked on the upper
axis correspond to compressions of the fcc structure on the lower axis.

for the three aluminium structures. Here Pcol is the pressure at T = 0 K. The figure also shows
the dependence described by the formula

γ (V ) = 2.136 + 4

[
V

Ṽ0

− 1

]
, (44)

that is used for the Grüneisen parameter in the semi-empirical EOS [52]. Our calculations
show that in the range of compressions considered, the Grüneisen parameters of fcc, bcc, and
hcp aluminium are fundamentally different instead of being almost the same as they would be
according to the Slater formula. For the fcc structure our results are close both qualitatively
and quantitatively to semi-empirical formula (44), while the values of the Grüneisen parameter
obtained using the Slater formula agree with it only for small compressions. This result
is a consequence of the fact that our approach is more accurate than the Slater formula in
describing how the vibrational free energy of the lattice ions depends on the crystal structure.
Our Grüneisen parameter differs from that obtained in terms of the mean-field potential [15]
for the same reason.

Using the expression for the energy of zero-point vibrations per atom in the Debye model:

E0(V ) = 9
8 kD(V ), (45)

where k is Boltzmann’s constant, one can calculate the contribution of zero-point vibrations to
pressure, and the bulk modulus and its pressure derivative. The last column of table 1 contains
these values obtained taking into account zero-point vibrations of nuclei at zero pressure.
Gibbs potentials for bcc and hcp structures relative to fcc structure, calculated considering the
impact of zero-point vibrations, are shown in figure 1(b).

Moreover, we calculated the 300 K isotherm and Hugoniot using the Debye temperature
and density of states on the Fermi surface as functions of volume in the equation for free
energy (40). They are shown in figures 4 and 5, respectively, along with experimental data
and data obtained from the semi-empirical EOS. Since our EOS does not contains a single
parameter determined from the experimental data and is completely based on the ab initio
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Figure 4. The theoretical 300 K isotherm for aluminium (solid curve), compared with room
temperature diamond-anvil-cell measurements [53] (open circles) and a 300 K isotherm deduced
from shock data [54] (solid circles).
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Figure 5. Comparison of the calculated Hugoniot (——) for aluminium with the Hugoniot obtained
from the semi-empirical EOS [55] (– – –) and the experimental data of Mitchel and Nellis [56] (+),
Al’tshuler et al [57] (◦), Al’tshuler et al [58] (♦), Neal [59] (�), McQueen et al [60] (�).

calculations, the agreement can be considered satisfactory—especially so because our EOS
is not intended to replace the semi-empirical EOS; its purpose is to give information in cases
when there are no experimental data or direct experiment is not feasible.

4.3. The relative stability diagram for fcc, bcc, and hcp Al

Having thermodynamic functions for T > 0, we tried to plot a relative stability diagram
for fcc, bcc, and hcp aluminium structures in coordinates (P, T ) by comparing the Gibbs
thermodynamic potentials of these three structures. Similarly, the relative stability diagram
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Figure 6. Gibbs potential difference �G = G − G fcc of bcc and hcp aluminium versus pressure
for three isotherms: T = 300, 1200, and 1400 K. The pressure axis includes the thermal pressure.

Table 6. Debye temperature versus relative volume for fcc, bcc, and hcp aluminium.

V/Ṽ0 fcc
D (K) bcc

D (K) 
hcp
D (K)

1.000 427.89 — 415.44
0.900 546.04 — —
0.800 704.61 — —
0.700 847.35 — 834.08
0.626 941.27 275.31 —
0.600 971.14 578.79 —
0.500 1066.4 978.48 1271.8
0.450 1061.6 1165.8 —
0.400 878.81 1367.9 1427.6
0.350 — 1606.8 1345.0
0.300 — 1900.9 —

was plotted for bcc and fcc potassium [12]. A good agreement between the calculated and the
experimental phase diagrams for potassium [12], when energies of neighbour structures are
very close to each other (�E ≈ 4 × 10−5 Ryd), leads us to expect the analogous results for
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Figure 7. The relative stability diagram for fcc, bcc, and hcp aluminium in coordinates (P, T ).
The dotted curve is the boundary of the mechanical stability region of bcc structure, dashed curves
show the single-stage compression Hugoniot and one of the two-stage compression Hugoniot curves
obtained with the semi-empirical EOS [55]. The pressure axis includes the thermal pressure.

aluminium, for which experimental data on phase boundaries are absent, to also be sufficiently
accurate. However, for aluminium the problem appears to be more difficult. Here we have
a case where a thermodynamically preferable structure becomes mechanically unstable. The
problem is illustrated in figure 6, where the Gibbs thermodynamic potentials of bcc and hcp
structures are shown relatively to the fcc one at three temperatures.

In figure 7 we show the relative stability diagram in coordinates (P, T ) for fcc, bcc,
and hcp Al. The phase boundaries, that were found by comparing the Gibbs thermodynamic
potentials of the fcc, bcc, and hcp aluminium structures, are shown in figure 7 as solid curves.
The melting curve was obtained using the Lindeman criterion

Tm = constant × V 2/32
D(V ) (46)

and the experimental melting point at atmospheric pressure. It is shown as a solid curve,
too. Dashed curves are a single-stage compression Hugoniot and the two-stage compression
Hugoniot obtained from the semi-empirical EOS [55]. The boundary of mechanical stability
for bcc aluminium is marked with dots. It is described by the equation

Vbcc(P, T ) = Vb, (47)

where Vb is the specific volume for which C̃11 is equal to |C̃12|. According to our calculations,
bcc structure has the lowest thermodynamic potential near this boundary at temperatures above
∼1000 K. Hence, a direct fcc–bcc transition is impossible at temperatures above ∼1000 K.
Therefore, a structure different from those considered must exist at such temperatures, and the
fcc structure transforms into it to ensure the continuity of the thermodynamic potential. This
Al structure change into bcc structure upon further compression. We are now exploring what
structure is intermediate between fcc and bcc.

5. Conclusions

We performed a set of first-principles, self-consistent, total-energy calculations with the
FPLMTO method to determine the EOS and the elastic constants of the fcc, bcc, and hcp Al
structures at T = 0. The specific volume, bulk moduli, and elastic constants that we calculated
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for the fcc structure at zero pressure are in a good agreement with available experimental data.
We used elastic constants to calculate the contribution of the thermal excitation of the nuclei
to thermodynamic functions and to predict the form of the relative stability diagram of the fcc,
bcc, and hcp Al structures on the basis of the Debye model. Our calculations show that at
pressures within 1–2 Mbar and temperatures T > 1000 K, the aluminium structure must have
a lower symmetry compared with the structures considered. It would be very interesting to
verify this outcome experimentally. It is not improbable that the same effect as was described
by Neaton and Ashcroft [61] occurs in aluminium at T > 0.
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[26] Söderlind P, Eriksson O, Wills J M and Boring A M 1993 Phys. Rev. B 48 5844
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